A ball is thrown vertically down from a height of 40 m from the ground with an initial velocity v. The ball hits the ground, loses \(\frac{1}{3}rd\) of its total mechanical energy and rebounds back to the same height. If the acceleration due to gravity is \(10 ms^{-2}\), then the value of v is
(a) \(5 ms^{-1}\)
(b) \(10 ms^{-1}\)
(c) \(15 ms^{-1}\)
(d) \(20 ms^{-1}\)
Given, height (h) = 40 m
Loss of energy = \(\frac{1}{3}rd\) of total mechanical energy
Acceleration due to gravity (g ) = \(10ms^{-2}\)
Letthetotal mechanical energy= 1J
Remaining energy \(=1-\frac{1}{3}=\frac{2}{3}J\)
Now,
\(\frac{2}{3}\Big(\frac{1}{2}mv^2+mgh\Big)=mgh\)
\(\Rightarrow \frac{2}{3}\Big(\frac{1}{2}v^2+gh\Big)=gh\)
\(\Rightarrow \frac{v^2}{3}=gh-\frac{2gh}{3}\)
\(\Rightarrow \frac{v^3}{3}=\frac{gh}{3}\Rightarrow v=\sqrt{gh}\)
\(\Rightarrow v=\sqrt{400}\)
\(\Rightarrow v=20m/s\)
Topic image not updated
More information not updated
A force F is applied on a square plate of length L. If the percentage error in the determination of L is 3% and in F is 4%, then permissible error in the calculation of pressure is
(a) 13%
(b) 10%
(c) 7%
(d)12%
Given,
Percentage error in Iength = 3%
Percentage error in force = 4%
We know that,
Pressure, \(P =\frac{F}{A}\)
Area of square \(=(L)^2\)
\(P=\frac{F}{L^2}\)
\(\frac{\Delta P}{P}=\frac{\Delta F}{F}+\frac{2\Delta L}{L}\)
\(\Bigl(\frac{\Delta P}{P}\times 100\Bigr)=\Bigl(\frac{\Delta F}{F}\times 100\Bigr)+2\Bigl(\frac{\Delta L}{L}\times 100\Bigr)\)
\(=4\%+2(3\%)=10\%\)
Topic image not updated
More information not updated
The two femurs each of cross-sectional area \(10 \ \text {cm}^2\) support the upper part of a human body of mass \(40\ \text {kg}\). The average pressure sustained by the femurs is (Take \(\text g = 10 \ \text {m s}^{-2}\) )
(a) \(2 \times 10^3 \ \text {N m}^{-2 }\)
(b) \(2 \times 10^4\ \text {N m}^{-2 }\)
(c) \(2 \times 10^5\ \text {N m}^{-2 }\)
(d) \(2 \times 10^6\ \text {N m}^{-2 }\)
Total cross-sectional area of the femurs is,
\(A = 2 \times 10\ \text {cm}^2 = 2 \times 10\times 10^{-4}\ \text m^2= 20 \times 10^{-4}\ \text m^2 \)
Force acting on them is
\( F = mg = 40\ \text {kg} \times 10\ \text { m s}^{-2} = 400\ \text N \)
\(\therefore \) Average pressure sustained by them is
\(P= \frac{F}{A}= \frac{400\ \text N}{20\times 10^{-4}\ \text m^2}=2\times 10^5\ \text N\ \text m^{-2}\)
Topic image not updated
More information not updated
The number of discontinuous functions \(y(x)\) on \([-2,2]\) satisfying \(x^2+y^2=4\) is
(a) \(0\)
(b) \(1\)
(c) \(2\)
(d) \(\gt 2\)
Function which satisfy the relation \(x^2+y^2=4\) are \(y(x)-\sqrt{4-x^2}\) and \(y(x)=-\sqrt {4-x^2}.\)
And both functions are continuous in \([-2,2].\)
Topic image not updated
More information not updated
The remainder obtained when \((1!)^2+(2!)^2+(3!)^2+.....+(100!)^2\) is divided by \(10^2\) is
a.14
b.17
c. 28
d. 27
Here, terms greater than 5! i.e.
\((5!)^2,(6!)^2,......,(100!)^2\) is divisible by 100.
\(\therefore \) For terms
\((5!)^2, (6!)^2,.....,(100!)^2\) remainder is 0.
Now, consider \((1!)^2+(2!)^2+(3!)^2+(4!)^2\)
\(=1+4+36+576\)
\(=617\)
When, 617 is divided by 100, its remainder is 17.
So, required remainder is 17.
Topic image not updated
More information not updated
If, for all real values of \(\theta;a=\sin^2\theta+\cos^4\theta\) then
(a) \(a\geq\frac{3}{4}\) (b) \(a\leq\frac{3}{4}\)
(c) a = 1 (d) \(a=\frac{1}{2}\)
\(a=\sin^2\theta+\cos^4\theta=\sin^2\theta+(1-\sin^2\theta)^2\)
\(=\sin^4\theta-\sin^2\theta+1+\bigg(\frac{1}{2}\bigg)^2-\bigg(\frac{1}{2}\bigg)^2\)
\(\Rightarrow\ a=\bigg(\sin^2\theta-\frac{1}{2}\bigg)^2+1-\frac{1}{4}=\bigg(\sin^2\theta-\frac{1}{2}\bigg)^2+\frac{3}{4}\)
\(\therefore\ a\geq\frac{3}{4}\) \(\bigg[\because\ \bigg(\sin^2\theta-\frac{1}{2}\bigg)^2_{min}=0\bigg]\)
Topic image not updated
More information not updated
If \(B_E\) represents equatorial magnetic field and \(B_A\) represents axial magnetic field due to a bar magnet.
Which of the following relationships between \(B_E\) and \(B_A\) is correct?
(a) \(B_E=2B_A\)
(b) \(B_A=2B_E\)
(c) \(B_E=4B_A\)
(d) \(B_A=4B_E\)
As equatorial magnetic field due to bar magnet is
\(B_E=\frac{\mu_0m}{4\pi r^3}\) ...(i)
and axial magnetic field due to bar magnet is
\(B_A=\frac{\mu_0}{4\pi}\frac{2}{r^3}\) ...(ii)
From (i) and (ii), we get
\(B_A=2B_E\)
Topic image not updated
More information not updated
If \(9\times 3=36;11\times 7=81 \) then \(5\times 13=?\)
(a) 65
(b) 66
(c) 81
(d) 51
\(5\times 13=5+13=18,\) then
\(\frac{18}{2}=(9)^2=81\)
Topic image not updated
More information not updated
If a natural number \('\alpha'\) is divided by 7, the remainder is 5. If a natural number \('\beta'\) is divided by 7 , the remainder is 3. The remainder is 'r' if \(\alpha+\beta\) is divided by 7. Find the value of \(\frac{3r+5}{4}.\)
(a) 2 (b) 7
(c) 8 (d) 11
Here, \(\alpha=7x+5,\)
\(\beta=7y+3\)
\(\therefore\ \alpha+\beta=7(x+y)+8=7(x+y)+7+1\)
If \(\alpha+\beta\) is divided by 7, then remainder is 1.
\(\therefore\ r=1\)
Hence, \(\frac{3r+5}{4}=\frac{3+5}{4}=2\)
Topic image not updated
More information not updated
Find the principal values of \(\cos^{-1}\Bigl(\frac{1}{2}\Bigr)\)
(a) \(-\frac{\pi}{3}\)
(b) \(\frac{\pi}{3}\)
(c) \(\frac{\pi}{2}\)
(d) \(\frac{2\pi}{3}\)
Let \(\cos^{-1}\Bigl(\frac{1}{2}\Bigr)=\theta \Rightarrow \cos \theta=\frac{1}{2}=\cos\frac{\pi}{3}\)
\(\Rightarrow\ \ \ \theta=\frac{\pi}{3}\in[0,\pi]\)
\(\therefore\) Principal value of \(\cos^{-1}\Bigl(\frac{1}{2}\Bigr)\) is \(\frac{\pi}{3}\)
Topic image not updated
More information not updated
If \(|a|=8,|b|=3\) and \(|a\times b|=12,\) then find the angle between a and b.
a. \(\frac{\pi}{3}\)
b. \(\frac{\pi}{6}\)
c. \(\frac{\pi}{4}\)
d. None of these
Given, \(|a|=8,|b|=3\) and \(|a\times b|=12\)
We know that, \(\sin \theta =\frac{|a\times b|}{|a||b|}\)
\(\Rightarrow \sin \theta =\frac{12}{8\times 3}=\frac{1}{2}\Rightarrow \sin \theta =\sin \frac{\pi}{6}\)
\(\Rightarrow \theta =\frac{\pi}{6}\) \(\Big[ \sin \frac{\pi}{6}=\frac{1}{2} \Big]\)
Hence, angle between a and b is \(\frac{\pi}{6}.\)
Topic image not updated
More information not updated
Two masses \(m_1\) and \(m_2\) connected by a spring of spring constant k rest on a frictionless surface. If the masses are pulled apart and let go, the time period of oscillation is
(a) \(T=2\pi \sqrt{\frac{1}{k}\Big(\frac{m_1m_2}{m_1+m_2}\Big)}\)
(b) \(T=2\pi \sqrt{k\Big(\frac{m_1+m_2}{m_1m_2}\Big)}\)
(c) \(T=2\pi \sqrt{\frac{m_1}{k}}\)
(d) \(T=2\pi \sqrt{\frac{m_2}{k}}\)
Let displacements of masses \(m_1\) and \(m_2\) are \(x_1\) and \(x_2,\) respectively.
Total eloagation of spring is \(x=x_1+x_2.\)
So, when spring snaps back, pull on each of mass is
\(F=-kx\)
Hence, by second law equation for \(m_1\) and \(m_2\) are
\(m_1a_1=-kx\Rightarrow m_1 \frac{d^2x_1}{dt^2}=-kx\)
and \(m_2a_2=- kx\Rightarrow m_2 \frac{d^2 x_2}{dt}=-kx\)
Now, from \(x=x_1+x_2,\) we have
\(\frac{d^2x}{dt^2}= \frac{d^2x_1}{dt_2}+\frac{d^2x_2}{dt_2}\)
\(\Rightarrow \frac{d^2x}{dt_2}=\frac{-k}{m_1}x+\frac{-k}{m_2} x\)
\(\Rightarrow \frac{d^2x}{dt^2}=- k \Big(\frac{1}{m_1}+\frac{1}{m_2}\Big) x\)
So, \(\omega^2=k \Big(\frac{1}{m_1}+\frac{1}{m_2}\Big)= k\Big(\frac{m_1+m_2}{m_1m_2}\Big)\)
Hence, time period of oscillation is
\(T=\frac{2\pi}{\omega}=2\pi\sqrt{ \frac{1}{k}\Big(\frac{m_1m_2}{m_1+m_2}\Big)}\)
Topic image not updated
More information not updated
The flux linked with a coil at any instant t given by \(\phi =10t^2-50 t+250\) then, induced emf at \(t=3 s\) is
(a) -10 V
(b) 10 V
(c) 190 V
(d) -190 V
Here, \(\phi =10 t^2- 50t+250\)
\(\therefore e=\frac{-d\phi}{dt}=\frac{-d}{dt}(10t^2-50t+250)=-(20 t-50)\)
At \(t=3s,e=-(20\times 3-50)=-10V\)
Topic image not updated
More information not updated
The flux linked with a coil at any instant t given by \(\phi =10t^2-50 t+250\) then, induced emf at \(t=3 s\) is
(a) -10 V
(b) 10 V
(c) 190 V
(d) -190 V
Here, \(\phi =10 t^2- 50t+250\)
\(\therefore e=\frac{-d\phi}{dt}=\frac{-d}{dt}(10t^2-50t+250)=-(20 t-50)\)
At \(t=3s,e=-(20\times 3-50)=-10V\)
Topic image not updated
More information not updated
The number of commutative binary operations that can be defined on a set of \(2\) elements is
(a) \(8\)
(b) \(6\)
(c) \(4\)
(d) \(2\)
Required no.of operations \(=(2)^{\frac{2(2-1)}{2}}\)
\(=(2)^1=2\)
Topic image not updated
More information not updated
If \(\log _{10}a+\log _{10}b=\log_{10}(a+b)\) then
(a) \(a=\frac{b^2}{1-b}\)
(b) \(a=\frac{b}{1-b}\)
(c) \(a=\frac{b}{b-1}\)
(d) \(a=\frac{b}{a+b}\)
\(\log _{10}a+\log _{10}b=\log _{10}(a+b)\)
\(\Rightarrow \log _{10}(a.b)=\log _{10}(a+b)\)
\(\Rightarrow a.b=a+b\)
\(\Rightarrow a(b-1)=b\Rightarrow a=\frac{b}{b-1}\)
Topic image not updated
More information not updated
The wrong unit conversion among the following is
(a) \(1\) angstrom \(= 10^{-10} \text m \)
(b) \(1\) fermi \(= 10^{-15 }\text m \)
(c) \(1\) light year \(= 9.46 \times 10^{15}\text m \)
(d) \(1\) astronomical unit \(= 1.496 \times 10^{-11} \text m\)
I astronomical unit \(=1.496\times 10^{11}\text m\)
All the other unit conversions are correct.
Topic - COMPLEX NUMBERS
More information not updated
A railway engine is travelling along a circular railway track of radius 1500 metres with a speed of 66 km/hr. Find the angle turned by the engine in 10 seconds.
(a) \(10^\circ\)
(b) \(7^\circ\)
(c) \(11^\circ\)
(d) \(8^\circ\)
Distance moved by the train along circular railway
track\(=\) speed \(\times\) time\(= \Big(\frac{66 \text {km}}{1 \text {hr}}\Big)\times 10 \ \text {sec}\)
\(=\frac{66000\ \text m}{3600 \sec}\times 10\sec=\frac{550}{3}\text m\)
If the angle turned is \(\theta\) radians, then
\(\theta=\frac{\frac{550}{3}}{1500}=\frac{11}{90}\)
\(\therefore \) Required angle \(=\frac{11}{90}\) radian
\(=\frac{11}{90}\times \frac{180}{\pi}
=\Big(\frac{22}{\pi}\Big)^\circ=7^\circ\)
Topic image not updated
More information not updated
A railway engine is travelling along a circular railway track of radius 1500 metres with a speed of 66 km/hr. Find the angle turned by the engine in 10 seconds.
(a) \(10^\circ\)
(b) \(7^\circ\)
(c) \(11^\circ\)
(d) \(8^\circ\)
Distance moved by the train along circular railway
track\(=\) speed \(\times\) time\(= \Big(\frac{66 \text {km}}{1 \text {hr}}\Big)\times 10 \ \text {sec}\)
\(=\frac{66000\ \text m}{3600 \sec}\times 10\sec=\frac{550}{3}\text m\)
If the angle turned is \(\theta\) radians, then
\(\theta=\frac{\frac{550}{3}}{1500}=\frac{11}{90}\)
\(\therefore \) Required angle \(=\frac{11}{90}\) radian
\(=\frac{11}{90}\times \frac{180}{\pi}
=\Big(\frac{22}{\pi}\Big)^\circ=7^\circ\)
Topic image not updated
More information not updated
The minimum distance between a point on the curve \(y=e^x\) and a point on the curve \(y=\log _ex\) is
(a) \(\frac{1}{\sqrt{2}}\)
(b) \(\sqrt{2}\)
(c) \(\sqrt{3}\)
(d) \(2\sqrt{2}\)
\(y=e^x\) and \(y=\log_ex\) are inverse of each other
Minimum distance of the curve
at (0, 1) and (1, 0)
\(\sqrt{1+1}=\sqrt{2}\)
Topic image not updated
More information not updated
Let \(a=\hat{i}+\hat{j}+\hat{k},b=\hat{i}-\hat{j}+\hat{k},a\times b=b+\lambda \ a\ and\ a\cdot c=1,\) then which of the following is true
(a) \([a\ b\ c]=-\frac{8}{3}\ and\ \lambda=-\frac{1}{3}\)
(b) \([a\ b\ c]=\frac{8}{3}\ and\ \lambda=-\frac{1}{3}\)
(c) \([a\ b\ c]=-\frac{8}{3}\ and\ \lambda=-\frac{2}{3}\)
(d) \([a\ b\ c]=-\frac{8}{3}\ and\ \lambda=\frac{2}{3}\)
We have,
\(a=\hat{i}+\hat{j}+\hat{k},\ b=\hat{i}-\hat{j}+\hat{k}\)
\(\Rightarrow\ a\times b=b+\lambda a\)
\(\Rightarrow\ a\cdot(a\times c)=a\cdot b+\lambda|a|^2\)
\(0=1+3\lambda\)
\(\Rightarrow\ \lambda=-\frac{1}{3}\)
\(\Rightarrow\ a\times(b\times c)=a\times b+\lambda(a\times a)\)
\(\Rightarrow\ |a|^2c-(a\cdot c)a=b\times a\)
\(\Rightarrow\ c=\frac{b\times a+(a\cdot c)a}{|a^2|}\)
\(\Rightarrow\ (a\times b)\cdot c=\frac{|a\times b|^2+a\cdot(a\times b)}{|a|^2}\)
\(\Rightarrow\ [a\ b\ c]=\frac{|a\times b|^2}{|a|^2}=\frac{8}{3}\)
Topic image not updated
More information not updated
According to Newton's law of cooling, the rate of cooling of a body is proportional to \((\triangle \theta)^n\), where \(\triangle \theta\) is the difference of the temperature of the body and the surroundings and n is equal to ____
(a) 2 (b) 3
(c) 4 (d) 1
We can use newton's law of cooling in convention and mathematically by
\(Q=h A \triangle T\)
Q= rate of conductive heat transfer
h= coefficient of convective heat transfer coefficient
A= area exposed to heat transfer
\(\triangle T=T_s-T_f\) its power is always unity
\(T_s= \) surface temperature
\(T_f=\)fluid temperature
So, the temperature gradient has always unity power
Topic image not updated
More information not updated
If \(a>0\) and discriminant of \(ax^2+2bx+c\) is -ve then
\(\begin{vmatrix}
a & b & ax+b\\
b & c & bx+c\\
ax+b &bx+c&0
\end{vmatrix}\) is ______
(a) +ve (b) \((ac-b^2) ( a x^2+2bx+c)\)
(c) -ve (d) 0
Apply \(C_1 \to xC_1+C_2-C_1\)
= \(\frac 1 x\)\(\begin{vmatrix}
0 & b & ax+b\\
0& c & bx+c\\
ax+b &bx+c&0
\end{vmatrix}\)
= \(\frac {(ax^2+2bx+c)} {x}\: [b^2x+bc-acx-bc]\)
= \((b^2-ac) (ax^2+2bx+c)\)
= (+ve) (-ve) <0
Topic image not updated
More information not updated
In the real number system, the equation \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) has
(a) no solution
(b) exactly two distinct solutions
(c) exactly four distinct solutions
(d) infinitely many solutions
We have,
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
\(\Rightarrow \sqrt{(\sqrt{x-1})^2-2(2)\sqrt{x-1}+(2)^2}\)
\(-\sqrt{(\sqrt{x-1})^2-2\times 3\sqrt{x-1}+(3)^2}=1\)
\(\Rightarrow \sqrt{(\sqrt{x-1}-2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=1\)
\(\Rightarrow |\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1\)
\(x\in [5,10]\)
\(\sqrt{x-1}-2-\sqrt{x-1}+3=1\)
\(\therefore 1=1\)
Hence, x has infinite solutions in \(x\in [5,10]\).
Topic image not updated
More information not updated
The angle \(\alpha,\beta,\gamma\) of a triangle satisfy the equation \(2\sin\alpha + 3\cos\beta =3\sqrt 2\) and \(3\sin\beta+2\cos\alpha=1.\) Then, \(\gamma\) equal
(a) \(150^\circ\)
(b) \(120^\circ\)
(c) \(60^\circ\)
(d) \(30^\circ\)
Given,
\(2\sin\alpha + 3\cos\beta =3\sqrt 2\) ...(i)
\(3\sin\beta+2\cos\alpha=1\) ...(ii)
On squaring and adding Eqs. (i) and (ii), we get
\(4+ 9+ 12(\sin\alpha\cos\beta+ \sin\beta\cos\alpha)=18+ 1\)
\(\Rightarrow 12\sin(\alpha + \beta) = 6\)
\(\Rightarrow \sin(\alpha+\beta)=\frac{1}{2}\)
\(\Rightarrow \alpha+\beta=150^\circ\)
\(\Rightarrow \alpha+\beta\ne 30^\circ\)
\(\therefore \gamma=180-(\alpha+\beta)\)
\(\Rightarrow \gamma=30^\circ \)
Topic image not updated
More information not updated
Electron in hydrogen atom first jumps from third excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelength \(\lambda_1:\lambda_2\) emitted in the two cases is
(a) 7/5
(b) 27/20
(c) 27/5
(d) 20/7
The wave number (\(\bar v\)) of the radiation
\(=\frac{1}{\lambda}\)
\(=R_\infty \Bigl[\frac{1}{n^2_1}-\frac{1}{n^2_2}\Bigr]\)
Now for case \((\text I) \ n_1= 3, n_2 = 2 \)
\(\frac{1}{\lambda_1}=R_\infty\Bigl[\frac{1}{9}\frac{-1}{4}\Bigr],R_\infty=\text{ Rydberg constant } \)
\(\frac{1}{\lambda_1}=R_\infty\Bigl[\frac{4-9}{36}\Bigr]=\frac{-5R_\infty}{36}\)
\(\Rightarrow \lambda_1=\frac{-36}{5R_\infty} \)
\(\frac{1}{\lambda_2}=R_\infty\Bigl[\frac{1}{4}-\frac{1}{1}\Bigr]=\frac{-3R_\infty}{4}\Rightarrow \lambda_2=\frac{-4}{3R_\infty}\)
\(\Rightarrow \frac{\lambda_1}{\lambda_2}=\frac{-36}{5R_\infty}\times \frac{3R_\infty}{-4}\Rightarrow \frac{\lambda_1}{\lambda_2}=\frac{27}{5}\)
Topic image not updated
More information not updated
The force F acting on a particle of mass m indicated by force-time graph shown below.
The change in momentum of the particle over the time interval from zero to 8 s is
(a) 24 Ns
(b) 20 Ns
(c) 12 Ns
(d) 6 Ns
Area under F-f curve will give change in momentum
\(\therefore\) According to the graph in question = Area = 12 Ns.
Topic image not updated
More information not updated
Consider the following statements:
I. \(\lim\limits_{n\to\infty}\frac{2^n+(-2)^n}{2^n}\) does not exist
II. \(\lim\limits_{n\to\infty}\frac{3^n+(-3)^n}{4^n}\) does not exist
Then,
(a) I is true and II is false
(b) I is false and II is true
(c) I and II are true
(d) Neither I nor II is true
I. \(\lim\limits_{n\to\infty}\frac{2^n+(-2)^n}{2^n}=\lim\limits_{n\to\infty}1+(-1)^n=\) does not exist
II. \(\lim\limits_{n\to\infty}\frac{3^n+(-3)^n}{4^n}=\lim\limits_{n\to\infty}\Bigl(\frac{3}{4}\Bigr)^n+\Bigl(\frac{-3}{4}\Bigr)^n\)
\(=0+0=0\)
Topic image not updated
More information not updated
In the figure, galvanometer \(G\) gives maximum deflection when
(a) magnet is pushed into the coil
(b) magnet is rotated into the coil
(c) magnet is stationary at the centre of the coil
(d) number of turns in the coil is reduced
When the magnet is pushed into the coil, magnetic flux linked with the coil changes. An emf is induced in the coil, which produces maximum deflection.
Topic image not updated
More information not updated
The order of reactivity in nucleophilic substitution reaction is
(a) \(\text {CH}_3\text F\lt\text {CH}_3\text {Cl} \lt\text {CH}_3\text I\lt\text {CH}_3\text {Br} \) (b) \(\text {CH}_3\text F\lt\text {CH}_3\text {Cl} \lt\text {CH}_3\text {Br}\lt\text {CH}_3\text {I} \)
(c) \(\text {CH}_3\text F\lt\text {CH}_3\text {Br} \lt\text {CH}_3\text {Cl}\lt\text {CH}_3\text {I} \) (d) \(\text {CH}_3\text I\lt\text {CH}_3\text {Br} \lt\text {CH}_3\text {Cl}\lt\text {CH}_3\text {F} \)
Topic image not updated
More information not updated