The radius of a right circular cylinder increases at the rate of 0. 1 cm/min, and the height decreases at the rate of 0.2 cm/min. The rate of change of the volume of the cylinder, in \(cm^3/min, \) when the radius is 2 cm and the height is 3 cm is
(a) \(-2\pi\) (b) \(-\frac{8\pi}{5}\) (c) \(-\frac{3\pi}{5}\) (d) \(\frac{2\pi}{5}\)
Given, \(V=\pi r^2h.\)
Differentiating both sides, we get
\(\frac{dV}{dt}=\pi\bigg(r^2\frac{dh}{dt}+2r\frac{dr}{dt}h\bigg)=\pi r\bigg(r\frac{dh}{dt}+2h\frac{dr}{dt}\bigg)\)
\(\frac{dr}{dt}=\frac{1}{10}\ and\ \frac{dh}{dt}=-\frac{2}{10}\)
\(\frac{dV}{dt}=\pi r\bigg(r\bigg(-\frac{2}{10}\bigg)+2h\bigg(\frac{1}{10}\bigg)\bigg)=\frac{\pi r}{5}(-r+h)\)
Thus, when r = 2 and h = 3,
\(\frac{dV}{dt}=\frac{\pi (2)}{5}(-2+3)=\frac{2\pi}{5}.\)
Topic image not updated
More information not updated
A person swims in a river aiming to reach exactly on the opposite point on the bank of a river. His
speed of swimming is 0.5 m/s at an angle of \(120^\circ\) with the direction of flow of water. The speed of water is
(a) 1.0 m/s (b) 0.5 m/s
(c) 0.25 m/s (d) 0.43 m/s
Let the speed of water \(=\overrightarrow{u}\)
Speed of swimmer \(=\overrightarrow{v}=0.5m/sec\)
Angle between \(\overrightarrow{v}\ and\ \overrightarrow{u}\ is\ 120^\circ.\) Then
\(\sin\theta=\frac{\overrightarrow{u}}{\overrightarrow{v}}\implies\frac{u}{0.5}=\frac{1}{2}\) or u =\(0.25\ ms^{-1}\)
Topic image not updated
More information not updated
A vessel is filled with a gas at a pressure of 76 cm of mercury at a certain temperature. The mass of the gas is increased by \(50\%\) by introducing more gas in the vessel at the same temperature. The resultant pressure of the gas is
(a) 76 cm of mercury
(b) 108 cm of mercury
(c) 112 cm of mercury
(d) 114 cm of mercury
Pressure exerted by a gas.
\(P= \frac{1}{2}\frac{M}{V}\nu^2_{a\nu}\)
Since the temperature \(T\) is kept constant, \(\nu^2_{a\nu}\) and \(V\) are also constant.
\(\therefore P\propto M\) or \( \frac{P_2}{P_1}= \frac{M_2}{M_1}\)
According to the question,
\(\therefore \frac{P_2}{76}= \frac{\Big[M_1+\Big(\frac{50}{100}\Big)M_1}{M_1}= \frac{3}{2}\)
\(\Rightarrow P_2= \frac{3}{2}\times 76=114\ \text {cm}\) of mercury.
Topic image not updated
More information not updated
A vessel is filled with a gas at a pressure of 76 cm of mercury at a certain temperature. The mass of the gas is increased by \(50\%\) by introducing more gas in the vessel at the same temperature. The resultant pressure of the gas is
(a) 76 cm of mercury
(b) 108 cm of mercury
(c) 112 cm of mercury
(d) 114 cm of mercury
Pressure exerted by a gas.
\(P= \frac{1}{2}\frac{M}{V}\nu^2_{a\nu}\)
Since the temperature \(T\) is kept constant, \(\nu^2_{a\nu}\) and \(V\) are also constant.
\(\therefore P\propto M\) or \( \frac{P_2}{P_1}= \frac{M_2}{M_1}\)
According to the question,
\(\therefore \frac{P_2}{76}= \frac{\Big[M_1+\Big(\frac{50}{100}\Big)M_1}{M_1}= \frac{3}{2}\)
\(\Rightarrow P_2= \frac{3}{2}\times 76=114\ \text {cm}\) of mercury.
Topic image not updated
More information not updated
Consider two infinitely long wires parallel to Z-axis carrying same current I in the positive Z direction. One wire passes through the point L at coordinates (–1, +1) and the other wire passes through the point M at coordinates (–1, –1). The resultant magnetic field at the origin O will be
(A) \(\frac{\mu_0 I}{2\sqrt{2\pi}}\hat{j}\) (B) \(\frac{\mu_0 I}{2\pi}\hat{j}\) (C) \(\frac{\mu_0 I}{2\sqrt{2\pi}}\hat{i}\) (D) \(\frac{\mu_0 I}{4\pi}\hat{j}\)
\(B_{net}=\frac{\mu_0I}{2\pi}\hat{j}\)
\(B_{net}=\sqrt2B\ where\ B=\frac{\mu_0I}{2\pi r}\)
\(B_{net}=\frac{\mu_0I}{2\pi r}\sqrt2 \hat{j}\)
\(=\frac{\mu_0I}{2\pi\sqrt2}\times\sqrt2\hat{j}\ and\ r=\sqrt2\)
Topic image not updated
More information not updated
A ball is thrown vertically down from a height of 40 m from the ground with an initial velocity v. The ball hits the ground, loses \(\frac{1}{3}rd\) of its total mechanical energy and rebounds back to the same height. If the acceleration due to gravity is \(10 ms^{-2}\), then the value of v is
(a) \(5 ms^{-1}\)
(b) \(10 ms^{-1}\)
(c) \(15 ms^{-1}\)
(d) \(20 ms^{-1}\)
Given, height (h) = 40 m
Loss of energy = \(\frac{1}{3}rd\) of total mechanical energy
Acceleration due to gravity (g ) = \(10ms^{-2}\)
Letthetotal mechanical energy= 1J
Remaining energy \(=1-\frac{1}{3}=\frac{2}{3}J\)
Now,
\(\frac{2}{3}\Big(\frac{1}{2}mv^2+mgh\Big)=mgh\)
\(\Rightarrow \frac{2}{3}\Big(\frac{1}{2}v^2+gh\Big)=gh\)
\(\Rightarrow \frac{v^2}{3}=gh-\frac{2gh}{3}\)
\(\Rightarrow \frac{v^3}{3}=\frac{gh}{3}\Rightarrow v=\sqrt{gh}\)
\(\Rightarrow v=\sqrt{400}\)
\(\Rightarrow v=20m/s\)
Topic image not updated
More information not updated
A force F is applied on a square plate of length L. If the percentage error in the determination of L is 3% and in F is 4%, then permissible error in the calculation of pressure is
(a) 13%
(b) 10%
(c) 7%
(d)12%
Given,
Percentage error in Iength = 3%
Percentage error in force = 4%
We know that,
Pressure, \(P =\frac{F}{A}\)
Area of square \(=(L)^2\)
\(P=\frac{F}{L^2}\)
\(\frac{\Delta P}{P}=\frac{\Delta F}{F}+\frac{2\Delta L}{L}\)
\(\Bigl(\frac{\Delta P}{P}\times 100\Bigr)=\Bigl(\frac{\Delta F}{F}\times 100\Bigr)+2\Bigl(\frac{\Delta L}{L}\times 100\Bigr)\)
\(=4\%+2(3\%)=10\%\)
Topic image not updated
More information not updated
The two femurs each of cross-sectional area \(10 \ \text {cm}^2\) support the upper part of a human body of mass \(40\ \text {kg}\). The average pressure sustained by the femurs is (Take \(\text g = 10 \ \text {m s}^{-2}\) )
(a) \(2 \times 10^3 \ \text {N m}^{-2 }\)
(b) \(2 \times 10^4\ \text {N m}^{-2 }\)
(c) \(2 \times 10^5\ \text {N m}^{-2 }\)
(d) \(2 \times 10^6\ \text {N m}^{-2 }\)
Total cross-sectional area of the femurs is,
\(A = 2 \times 10\ \text {cm}^2 = 2 \times 10\times 10^{-4}\ \text m^2= 20 \times 10^{-4}\ \text m^2 \)
Force acting on them is
\( F = mg = 40\ \text {kg} \times 10\ \text { m s}^{-2} = 400\ \text N \)
\(\therefore \) Average pressure sustained by them is
\(P= \frac{F}{A}= \frac{400\ \text N}{20\times 10^{-4}\ \text m^2}=2\times 10^5\ \text N\ \text m^{-2}\)
Topic image not updated
More information not updated
The number of discontinuous functions \(y(x)\) on \([-2,2]\) satisfying \(x^2+y^2=4\) is
(a) \(0\)
(b) \(1\)
(c) \(2\)
(d) \(\gt 2\)
Function which satisfy the relation \(x^2+y^2=4\) are \(y(x)-\sqrt{4-x^2}\) and \(y(x)=-\sqrt {4-x^2}.\)
And both functions are continuous in \([-2,2].\)
Topic image not updated
More information not updated
The remainder obtained when \((1!)^2+(2!)^2+(3!)^2+.....+(100!)^2\) is divided by \(10^2\) is
a.14
b.17
c. 28
d. 27
Here, terms greater than 5! i.e.
\((5!)^2,(6!)^2,......,(100!)^2\) is divisible by 100.
\(\therefore \) For terms
\((5!)^2, (6!)^2,.....,(100!)^2\) remainder is 0.
Now, consider \((1!)^2+(2!)^2+(3!)^2+(4!)^2\)
\(=1+4+36+576\)
\(=617\)
When, 617 is divided by 100, its remainder is 17.
So, required remainder is 17.
Topic image not updated
More information not updated
If, for all real values of \(\theta;a=\sin^2\theta+\cos^4\theta\) then
(a) \(a\geq\frac{3}{4}\) (b) \(a\leq\frac{3}{4}\)
(c) a = 1 (d) \(a=\frac{1}{2}\)
\(a=\sin^2\theta+\cos^4\theta=\sin^2\theta+(1-\sin^2\theta)^2\)
\(=\sin^4\theta-\sin^2\theta+1+\bigg(\frac{1}{2}\bigg)^2-\bigg(\frac{1}{2}\bigg)^2\)
\(\Rightarrow\ a=\bigg(\sin^2\theta-\frac{1}{2}\bigg)^2+1-\frac{1}{4}=\bigg(\sin^2\theta-\frac{1}{2}\bigg)^2+\frac{3}{4}\)
\(\therefore\ a\geq\frac{3}{4}\) \(\bigg[\because\ \bigg(\sin^2\theta-\frac{1}{2}\bigg)^2_{min}=0\bigg]\)
Topic image not updated
More information not updated
If \(B_E\) represents equatorial magnetic field and \(B_A\) represents axial magnetic field due to a bar magnet.
Which of the following relationships between \(B_E\) and \(B_A\) is correct?
(a) \(B_E=2B_A\)
(b) \(B_A=2B_E\)
(c) \(B_E=4B_A\)
(d) \(B_A=4B_E\)
As equatorial magnetic field due to bar magnet is
\(B_E=\frac{\mu_0m}{4\pi r^3}\) ...(i)
and axial magnetic field due to bar magnet is
\(B_A=\frac{\mu_0}{4\pi}\frac{2}{r^3}\) ...(ii)
From (i) and (ii), we get
\(B_A=2B_E\)
Topic image not updated
More information not updated
If \(9\times 3=36;11\times 7=81 \) then \(5\times 13=?\)
(a) 65
(b) 66
(c) 81
(d) 51
\(5\times 13=5+13=18,\) then
\(\frac{18}{2}=(9)^2=81\)
Topic image not updated
More information not updated
If a natural number \('\alpha'\) is divided by 7, the remainder is 5. If a natural number \('\beta'\) is divided by 7 , the remainder is 3. The remainder is 'r' if \(\alpha+\beta\) is divided by 7. Find the value of \(\frac{3r+5}{4}.\)
(a) 2 (b) 7
(c) 8 (d) 11
Here, \(\alpha=7x+5,\)
\(\beta=7y+3\)
\(\therefore\ \alpha+\beta=7(x+y)+8=7(x+y)+7+1\)
If \(\alpha+\beta\) is divided by 7, then remainder is 1.
\(\therefore\ r=1\)
Hence, \(\frac{3r+5}{4}=\frac{3+5}{4}=2\)
Topic image not updated
More information not updated
Find the principal values of \(\cos^{-1}\Bigl(\frac{1}{2}\Bigr)\)
(a) \(-\frac{\pi}{3}\)
(b) \(\frac{\pi}{3}\)
(c) \(\frac{\pi}{2}\)
(d) \(\frac{2\pi}{3}\)
Let \(\cos^{-1}\Bigl(\frac{1}{2}\Bigr)=\theta \Rightarrow \cos \theta=\frac{1}{2}=\cos\frac{\pi}{3}\)
\(\Rightarrow\ \ \ \theta=\frac{\pi}{3}\in[0,\pi]\)
\(\therefore\) Principal value of \(\cos^{-1}\Bigl(\frac{1}{2}\Bigr)\) is \(\frac{\pi}{3}\)
Topic image not updated
More information not updated
If \(|a|=8,|b|=3\) and \(|a\times b|=12,\) then find the angle between a and b.
a. \(\frac{\pi}{3}\)
b. \(\frac{\pi}{6}\)
c. \(\frac{\pi}{4}\)
d. None of these
Given, \(|a|=8,|b|=3\) and \(|a\times b|=12\)
We know that, \(\sin \theta =\frac{|a\times b|}{|a||b|}\)
\(\Rightarrow \sin \theta =\frac{12}{8\times 3}=\frac{1}{2}\Rightarrow \sin \theta =\sin \frac{\pi}{6}\)
\(\Rightarrow \theta =\frac{\pi}{6}\) \(\Big[ \sin \frac{\pi}{6}=\frac{1}{2} \Big]\)
Hence, angle between a and b is \(\frac{\pi}{6}.\)
Topic image not updated
More information not updated
Two masses \(m_1\) and \(m_2\) connected by a spring of spring constant k rest on a frictionless surface. If the masses are pulled apart and let go, the time period of oscillation is
(a) \(T=2\pi \sqrt{\frac{1}{k}\Big(\frac{m_1m_2}{m_1+m_2}\Big)}\)
(b) \(T=2\pi \sqrt{k\Big(\frac{m_1+m_2}{m_1m_2}\Big)}\)
(c) \(T=2\pi \sqrt{\frac{m_1}{k}}\)
(d) \(T=2\pi \sqrt{\frac{m_2}{k}}\)
Let displacements of masses \(m_1\) and \(m_2\) are \(x_1\) and \(x_2,\) respectively.
Total eloagation of spring is \(x=x_1+x_2.\)
So, when spring snaps back, pull on each of mass is
\(F=-kx\)
Hence, by second law equation for \(m_1\) and \(m_2\) are
\(m_1a_1=-kx\Rightarrow m_1 \frac{d^2x_1}{dt^2}=-kx\)
and \(m_2a_2=- kx\Rightarrow m_2 \frac{d^2 x_2}{dt}=-kx\)
Now, from \(x=x_1+x_2,\) we have
\(\frac{d^2x}{dt^2}= \frac{d^2x_1}{dt_2}+\frac{d^2x_2}{dt_2}\)
\(\Rightarrow \frac{d^2x}{dt_2}=\frac{-k}{m_1}x+\frac{-k}{m_2} x\)
\(\Rightarrow \frac{d^2x}{dt^2}=- k \Big(\frac{1}{m_1}+\frac{1}{m_2}\Big) x\)
So, \(\omega^2=k \Big(\frac{1}{m_1}+\frac{1}{m_2}\Big)= k\Big(\frac{m_1+m_2}{m_1m_2}\Big)\)
Hence, time period of oscillation is
\(T=\frac{2\pi}{\omega}=2\pi\sqrt{ \frac{1}{k}\Big(\frac{m_1m_2}{m_1+m_2}\Big)}\)
Topic image not updated
More information not updated
The flux linked with a coil at any instant t given by \(\phi =10t^2-50 t+250\) then, induced emf at \(t=3 s\) is
(a) -10 V
(b) 10 V
(c) 190 V
(d) -190 V
Here, \(\phi =10 t^2- 50t+250\)
\(\therefore e=\frac{-d\phi}{dt}=\frac{-d}{dt}(10t^2-50t+250)=-(20 t-50)\)
At \(t=3s,e=-(20\times 3-50)=-10V\)
Topic image not updated
More information not updated
The flux linked with a coil at any instant t given by \(\phi =10t^2-50 t+250\) then, induced emf at \(t=3 s\) is
(a) -10 V
(b) 10 V
(c) 190 V
(d) -190 V
Here, \(\phi =10 t^2- 50t+250\)
\(\therefore e=\frac{-d\phi}{dt}=\frac{-d}{dt}(10t^2-50t+250)=-(20 t-50)\)
At \(t=3s,e=-(20\times 3-50)=-10V\)
Topic image not updated
More information not updated
The number of commutative binary operations that can be defined on a set of \(2\) elements is
(a) \(8\)
(b) \(6\)
(c) \(4\)
(d) \(2\)
Required no.of operations \(=(2)^{\frac{2(2-1)}{2}}\)
\(=(2)^1=2\)
Topic image not updated
More information not updated
If \(\log _{10}a+\log _{10}b=\log_{10}(a+b)\) then
(a) \(a=\frac{b^2}{1-b}\)
(b) \(a=\frac{b}{1-b}\)
(c) \(a=\frac{b}{b-1}\)
(d) \(a=\frac{b}{a+b}\)
\(\log _{10}a+\log _{10}b=\log _{10}(a+b)\)
\(\Rightarrow \log _{10}(a.b)=\log _{10}(a+b)\)
\(\Rightarrow a.b=a+b\)
\(\Rightarrow a(b-1)=b\Rightarrow a=\frac{b}{b-1}\)
Topic image not updated
More information not updated
The wrong unit conversion among the following is
(a) \(1\) angstrom \(= 10^{-10} \text m \)
(b) \(1\) fermi \(= 10^{-15 }\text m \)
(c) \(1\) light year \(= 9.46 \times 10^{15}\text m \)
(d) \(1\) astronomical unit \(= 1.496 \times 10^{-11} \text m\)
I astronomical unit \(=1.496\times 10^{11}\text m\)
All the other unit conversions are correct.
Topic image not updated
More information not updated
A railway engine is travelling along a circular railway track of radius 1500 metres with a speed of 66 km/hr. Find the angle turned by the engine in 10 seconds.
(a) \(10^\circ\)
(b) \(7^\circ\)
(c) \(11^\circ\)
(d) \(8^\circ\)
Distance moved by the train along circular railway
track\(=\) speed \(\times\) time\(= \Big(\frac{66 \text {km}}{1 \text {hr}}\Big)\times 10 \ \text {sec}\)
\(=\frac{66000\ \text m}{3600 \sec}\times 10\sec=\frac{550}{3}\text m\)
If the angle turned is \(\theta\) radians, then
\(\theta=\frac{\frac{550}{3}}{1500}=\frac{11}{90}\)
\(\therefore \) Required angle \(=\frac{11}{90}\) radian
\(=\frac{11}{90}\times \frac{180}{\pi}
=\Big(\frac{22}{\pi}\Big)^\circ=7^\circ\)
Topic image not updated
More information not updated
A railway engine is travelling along a circular railway track of radius 1500 metres with a speed of 66 km/hr. Find the angle turned by the engine in 10 seconds.
(a) \(10^\circ\)
(b) \(7^\circ\)
(c) \(11^\circ\)
(d) \(8^\circ\)
Distance moved by the train along circular railway
track\(=\) speed \(\times\) time\(= \Big(\frac{66 \text {km}}{1 \text {hr}}\Big)\times 10 \ \text {sec}\)
\(=\frac{66000\ \text m}{3600 \sec}\times 10\sec=\frac{550}{3}\text m\)
If the angle turned is \(\theta\) radians, then
\(\theta=\frac{\frac{550}{3}}{1500}=\frac{11}{90}\)
\(\therefore \) Required angle \(=\frac{11}{90}\) radian
\(=\frac{11}{90}\times \frac{180}{\pi}
=\Big(\frac{22}{\pi}\Big)^\circ=7^\circ\)
Topic image not updated
More information not updated
The minimum distance between a point on the curve \(y=e^x\) and a point on the curve \(y=\log _ex\) is
(a) \(\frac{1}{\sqrt{2}}\)
(b) \(\sqrt{2}\)
(c) \(\sqrt{3}\)
(d) \(2\sqrt{2}\)
\(y=e^x\) and \(y=\log_ex\) are inverse of each other
Minimum distance of the curve
at (0, 1) and (1, 0)
\(\sqrt{1+1}=\sqrt{2}\)
Topic image not updated
More information not updated
Let \(a=\hat{i}+\hat{j}+\hat{k},b=\hat{i}-\hat{j}+\hat{k},a\times b=b+\lambda \ a\ and\ a\cdot c=1,\) then which of the following is true
(a) \([a\ b\ c]=-\frac{8}{3}\ and\ \lambda=-\frac{1}{3}\)
(b) \([a\ b\ c]=\frac{8}{3}\ and\ \lambda=-\frac{1}{3}\)
(c) \([a\ b\ c]=-\frac{8}{3}\ and\ \lambda=-\frac{2}{3}\)
(d) \([a\ b\ c]=-\frac{8}{3}\ and\ \lambda=\frac{2}{3}\)
We have,
\(a=\hat{i}+\hat{j}+\hat{k},\ b=\hat{i}-\hat{j}+\hat{k}\)
\(\Rightarrow\ a\times b=b+\lambda a\)
\(\Rightarrow\ a\cdot(a\times c)=a\cdot b+\lambda|a|^2\)
\(0=1+3\lambda\)
\(\Rightarrow\ \lambda=-\frac{1}{3}\)
\(\Rightarrow\ a\times(b\times c)=a\times b+\lambda(a\times a)\)
\(\Rightarrow\ |a|^2c-(a\cdot c)a=b\times a\)
\(\Rightarrow\ c=\frac{b\times a+(a\cdot c)a}{|a^2|}\)
\(\Rightarrow\ (a\times b)\cdot c=\frac{|a\times b|^2+a\cdot(a\times b)}{|a|^2}\)
\(\Rightarrow\ [a\ b\ c]=\frac{|a\times b|^2}{|a|^2}=\frac{8}{3}\)
Topic image not updated
More information not updated
According to Newton's law of cooling, the rate of cooling of a body is proportional to \((\triangle \theta)^n\), where \(\triangle \theta\) is the difference of the temperature of the body and the surroundings and n is equal to ____
(a) 2 (b) 3
(c) 4 (d) 1
We can use newton's law of cooling in convention and mathematically by
\(Q=h A \triangle T\)
Q= rate of conductive heat transfer
h= coefficient of convective heat transfer coefficient
A= area exposed to heat transfer
\(\triangle T=T_s-T_f\) its power is always unity
\(T_s= \) surface temperature
\(T_f=\)fluid temperature
So, the temperature gradient has always unity power
Topic image not updated
More information not updated
If \(a>0\) and discriminant of \(ax^2+2bx+c\) is -ve then
\(\begin{vmatrix}
a & b & ax+b\\
b & c & bx+c\\
ax+b &bx+c&0
\end{vmatrix}\) is ______
(a) +ve (b) \((ac-b^2) ( a x^2+2bx+c)\)
(c) -ve (d) 0
Apply \(C_1 \to xC_1+C_2-C_1\)
= \(\frac 1 x\)\(\begin{vmatrix}
0 & b & ax+b\\
0& c & bx+c\\
ax+b &bx+c&0
\end{vmatrix}\)
= \(\frac {(ax^2+2bx+c)} {x}\: [b^2x+bc-acx-bc]\)
= \((b^2-ac) (ax^2+2bx+c)\)
= (+ve) (-ve) <0
Topic image not updated
More information not updated
In the real number system, the equation \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) has
(a) no solution
(b) exactly two distinct solutions
(c) exactly four distinct solutions
(d) infinitely many solutions
We have,
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
\(\Rightarrow \sqrt{(\sqrt{x-1})^2-2(2)\sqrt{x-1}+(2)^2}\)
\(-\sqrt{(\sqrt{x-1})^2-2\times 3\sqrt{x-1}+(3)^2}=1\)
\(\Rightarrow \sqrt{(\sqrt{x-1}-2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=1\)
\(\Rightarrow |\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1\)
\(x\in [5,10]\)
\(\sqrt{x-1}-2-\sqrt{x-1}+3=1\)
\(\therefore 1=1\)
Hence, x has infinite solutions in \(x\in [5,10]\).
Topic image not updated
More information not updated
The angle \(\alpha,\beta,\gamma\) of a triangle satisfy the equation \(2\sin\alpha + 3\cos\beta =3\sqrt 2\) and \(3\sin\beta+2\cos\alpha=1.\) Then, \(\gamma\) equal
(a) \(150^\circ\)
(b) \(120^\circ\)
(c) \(60^\circ\)
(d) \(30^\circ\)
Given,
\(2\sin\alpha + 3\cos\beta =3\sqrt 2\) ...(i)
\(3\sin\beta+2\cos\alpha=1\) ...(ii)
On squaring and adding Eqs. (i) and (ii), we get
\(4+ 9+ 12(\sin\alpha\cos\beta+ \sin\beta\cos\alpha)=18+ 1\)
\(\Rightarrow 12\sin(\alpha + \beta) = 6\)
\(\Rightarrow \sin(\alpha+\beta)=\frac{1}{2}\)
\(\Rightarrow \alpha+\beta=150^\circ\)
\(\Rightarrow \alpha+\beta\ne 30^\circ\)
\(\therefore \gamma=180-(\alpha+\beta)\)
\(\Rightarrow \gamma=30^\circ \)
Topic image not updated
More information not updated