Feedback Daily Quiz
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
InstaCue : Mathematics / Integrals

Integral As An Anti-derivative


Integral as an Anti-derivative

A function \(\phi(x)\) is called a primitive or anti-derivative of a function \(f(x),\ \text{if}\ \phi'(x)=f(x).\) If \(f_1(x)\ \ and \ \ f_2(x)\) are two anti-derivatives of \(f(x),\) then \(f_1(x)\ \ and \ \ f_2(x)\) differ by a constant. The collection of all its anti-derivatives is called indefinite integral of \(f(x)\) and is denoted by \(\int\ f(x)\ dx.\)

Thus, \(\frac{d}{dx}\ \{\phi\ (x)\ +\ C\}=f(x) \Rightarrow\int\ f(x)\ dx= \phi\ (x)\ +\ C\)

where, \(\phi\ (x)\) is an anti-derivative of \(f (x)\)\(f (x)\) is the integrand and \(C\) is an arbitrary constant known as the constant of integration. Anti-derivative of odd function is always even and of even function is always odd.

Properties of Indefinite Integrals

\(\bullet\ \ \int\ \{f(x)\ \pm\ g(x)\}\ dx=\ \int\ f(x)\ dx\ \pm\ \int\ g(x)\ dx\)

\(\bullet\ \ \int\ k\ \cdot f(x)\ dx=k\ \cdot \int\ f(x)\ dx,\) where \(k\) is any non-zero real number.

\(\bullet\ \ \int\ [k_1\ f_1(x)\ +\ k_2\ f_2(x)\ +... +\ k_n\ f_n(x)]\ dx=\ k_1\ \int\ f_1(x)\ dx\ +\ k_2\ \int\ f_2(x)\ dx\ +...+\ k_n\ \int\ f_n(x)\ dx,\)

     where \(k_1,\ k_2, ...\ k_n\) are non-zero real numbers.

 

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Exponential Formulae


3. Exponential Formulae

\((i)\ \ \int\ e^x\ dx=e^x\ +\ C\\ (ii)\ \ \int\ e^{(ax\ +\ b)}\ dx=\frac{1}{a}\ \cdot e^{(ax\ +\ b)}\ +\ C\\ (iii)\ \ \int\ a^x\ dx=\frac{a^x}{\\log_e\ a}\ +\ C,\ a \gt 0\ and\ a \ne 1\\ (iv)\ \ \int\ a^{(bx\ +\ c)}\ dx=\ \frac{1}{b}\cdot \frac{a^{(bx\ +\ c)}}{\\log_e\ a}\ +\ C,\ a \gt 0\ and\ a \ne 1\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Integration Of Different Types Of Functions


3. Integration of Different Types of Functions

\(\bullet\)  To evaluate integrals of the form \(\int\ \sin^p\ x\ \cos^q\ x\ dx\)

Where, \(p,\ q \in\ Q\) we use the following rules:

   (i)  If \(p\) is odd, then put \(\cos\ x=t\)

   (ii)  If \(q\) is odd, then put \(\sin\ x=t\)

   (iii)  If both \(p,\ q\) are  odd, then put either \(\sin\ x=t\ \ or\ \ \cos\ x=t\)

   (iv)  If both \(p,\ q\) are even, then use trigonometric identities only.

   (v) If \(p,\ q\) are rational numbers and \(\Big(\frac{p\ +\ q\ -\ 2}{2}\Big)\) is a negative integer, then put \(x=t\ \ or\ \ \tan\ x=t\) as required.

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 1


Integration

It is the inverse process of differentiation. If the derivative of \(F(x)\) is \(f(x)\) then we say that anti-derivative or integral of \(f(x)\) is \(F(x)\) and we write \(\int\ f(x)\ dx=\ F(x)\)

\(\frac{d}{dx}\ [F(x)=\ f(x)\Rightarrow\ \int\ f(x)\ dx=\ F(x)\)

Example: Since \(\frac{d}{dx}\ (\sin x)=\ \cos\ x,\) we have \(\int\ \cos\ x\ dx=\ \sin\ x\)

If \(c\) is my constant then \(\frac{d}{dx}\ (\sin\ x\ +\ c)=\ \cos \ x\)

\(\int\ \cos\ x\ dx=\ (\sin\ x\ +\ c)\) different values of \(c\) will give different integrals.

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 2


Thus, given function may have an indefinite integrals. Because of this property, we call these integrals indefinite integrals \(\frac{d}{dx}\ [F(x)=\ F(x)\ \Rightarrow\ \int\ F(x)\ dx=\ F(x)\ +\ c\) 

where \(c\) is called the constant of integration. Any function to be integrated is known as integral

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 3


Formulae

On basis of differentiation and definition of Integration:

1.  \(\frac{d}{dx}\ \Big(\frac{x^{n\ +\ 1}}{n\ +\ 1}\Big)=\ x^n,\ n\ne\ -1\ \Rightarrow\ \int\ x^n\ dx=\ \frac{x^{n\ +\ 1}}{n\ +\ 1}\ +\ c\)

2.  \(\frac{d}{dx}\ (\log\ |\ x\ |)=\ \frac{1}{x}\ \Rightarrow\ \int\ \frac{1}{x}\ dx=\ \log\ |\ x\ |\ +\ c\)

3.  \(\frac{d}{dx}\ (e^x)=\ e^x\ \Rightarrow\ \int\ e^x\ dx=\ e^x\ +\ c\)

4.  \(\frac{d}{dx}\ \Big(\frac{a^x}{\log\ a}\Big)=a^x\ \Rightarrow\ \int\ a^x\ dx=\ \frac{a^x}{\log\ a}\ +\ c\)

5.  \(\frac{d}{dx}\ (\sin\ x)=\ \cos\ x\ \Rightarrow\ \int\ \cos\ x\ dx=\ \sin\ x\ +\ c\)

6.  \(\frac{d}{dx}\ (-\cos\ x)=\ \sin\ x\ \Rightarrow\ \int\ \sin\ x\ dx=\ -\cos\ x\ +\ c\)

7.  \(\frac{d}{dx}\ (\tan\ x)=\ \sec^2\ x\ \Rightarrow\ \int\ \sec^2\ x\ dx=\ \tan\ x\ +\ c\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 4


\(8.\ \ \frac{d}{dx}\ (-\cot\ x)=\ cosec^2\ x\ \Rightarrow\ \int\ cosec^2\ x\ dx=\ -\cot\ x\ +\ c\)

\(9.\ \ \frac{d}{dx}\ (\sec\ x)=\ \sec\ x\ \tan\ x\ \Rightarrow\ \int\ \sec\ x\ \tan\ x\ dx=\ \sec\ x\ +\ c\)

\(10.\ \ \frac{d}{dx}\ (-\ cosec\ x)=\ cosec\ x\ \cot\ x\ \Rightarrow\ \int\ cosec\ x\ \cot\ x\ dx=\ - cosec\ x\ +\ c\)

\(11.\ \ \frac{d}{dx}\ (\sin^{-1}\ x)=\ \frac{1}{\sqrt{1\ -\ x^2}}\ \Rightarrow\ \int\ \frac{1}{\sqrt{1\ -\ x^2}}\ dx=\ \sin^{-1}\ x\ +\ c\)

\(12.\ \ \frac{d}{dx}\ (\tan^{-1}\ x)=\ \frac{1}{1\ +\ x^2}\ \Rightarrow\ \int\ \frac{1}{1\ +\ x^2}\ dx=\ \tan^{-1}\ x\ +\ c\)

\(13.\ \ \frac{d}{dx}\ (\sec^{-1}\ x)=\ \frac{1}{x\ \sqrt{ x^2\ -\ 1}}\ \Rightarrow\ \int\ \frac{1}{x\ \sqrt{x^2\ -\ 1}}\ dx=\ \sec^{-1}\ x\ +\ c\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 5


Integration

Theorem 1

      \(\frac{d}{dx}\ \{\int\ f(x)\ dx\}=\ f(x)\)

Theorem 2

     \(\int\ k\ \cdot\ f(x)\ dx= k\ \cdot\ f(x)\ dx\), where \(k\) is a constant

Remark: In general, we have \(\int\ \{\ k_1\ \cdot\ f_1(x)\ \pm\ k_2\ \cdot\ f_2(x)\ \pm\ ...\ \pm\ k_n\ \cdot\ f_n(x)\ \}\ dx\)

\(=k_1\ \cdot\ \int\ f_1(x)\ dx\ \pm\ k_2\ \cdot\ \int\ f_2(x)\ dx\ \pm\ ...\ \pm\ k_n\ \cdot\ \int\ f_n(x)\ dx\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 6


Integration by Substitution

If we have to evaluate an Integral of the type \(\int \ f\{\ \phi\ (x)\}\ dx\) then we put \(\phi\ (x)=t\) and \(\phi'\ (x)\ dx=dt.\) With this substitution, the integrand becomes easily integrable.

Case 1:

When the integrand is of the form \(f(ax\ +\ b),\) we put \((ax\ +\ b)=t\) and \(dx=\frac{1}{a}\ dt\)

Case 2:

When the integrand is of the form \(x^{n\ -\ 1}.\ F(x^n)\) we put \(x^n=t\) and \(nx^{n\ -\ 1}\ dx=dt\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 7


Case 3:

When the integrand is of the form \(\{f(x)\}^n\ \cdot\ f'(x),\) we put \(f(x)=t\) and \(f'(x)\ dx=\ dt\)

Case 4:

When the integrand is of the form \(\frac{f'(x)}{f(x)},\) we put \(f(x)=t\) and \(f'(x)\ dx=\ dt\)

Theorem 1:

\(\int\ (ax\ +\ b)^n\ dx=\ \frac{(ax\ +\ b)^{n\ +\ 1}}{a(n\ +\ 1)}\ +\ c,\ n\ne-1\)

Theorem 1:

\((i)\ \ \int\ \cos\ (ax\ +\ b)\ dx=\ \frac{1}{a}\ \sin\ (ax\ +\ b)\ +c\\ (ii)\ \ \int\ cosec^2\ (ax\ +\ b)\ dx=\ -\frac{1}{a}\ \cot\ (ax\ +\ b)\ +c\)

 

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 8


Integration Using Trigonometric Identities

When the integrand consists of trigonometric functions, we use known identities to convert it into a form which can easily be integrated. Some of the identities useful for this purpose are given below:

\(1.\ \ 2\ \sin^2\ \Big(\frac{x}{2}\Big)=\ (1\ -\ cos\ x)\\ 2.\ \ 2\ \cos^2\ \Big(\frac{x}{2}\Big)=\ (1\ +\ cos\ x)\\ 3.\ \ 2\ \sin\ A\ \cos\ B=\ \sin\ (A\ +\ B)\ +\ \sin\ (A\ -\ B)\\ 4.\ \ 2\ \cos\ A\ \sin\ B=\ \sin\ (A\ +\ B)\ -\ \sin\ (A\ -\ B)\\ 5.\ \ 2\ \cos\ A\ \cos\ B=\ \cos\ (A\ +\ B)\ +\ \cos\ (A\ -\ B)\\ 6.\ \ 2\ \sin\ A\ \sin\ B=\ \cos\ (A\ -\ B)\ -\ \cos\ (A\ -\ B)\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 9


Integration by Parts

Theorem

If \(\mu\ \ and\ \ v\) are two functions of \(x\) then \(\int \ (\mu\ v)\ dx=\ [\ \mu\ \cdot\int\ v\ dx\ ]\ -\ \int\ \Big\{\frac{du}{dx}\ \cdot\ \int\ v\ dx\ \Big\}\ dx\) 

We can express this result as given below:

Integral of product of two functions \(=\ (1st\ function)\ \times\ (Integral\ of\ 2nd)\ -\ \int\ \{(derivative\ of\ 1st)\ \times\ (Integral\ of\ 2nd)\}\ dx\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 10


Remarks:

(i)  If the integrand is of the form \(f(x)\ x^n,\) we consider \(x^n\) as the first function and \(f(x)\) as the second function.

(ii)  If the integrand contains a logarithmic function, we take it as first function. In all such cases, if the second function is not given, we take it as \(1\).

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 11


Integration by Parts Based Theorems

Theorem 1:

\(\int\ e^x\ \{\ f(x)\ +\ f'(x)\ dx=e^x\ \cdot\ f(x)\ +\ c\)

Theorem 2:

\(\int\ e^{kx}\ \{\ k\ \cdot f(x)\ +\ f'(x)\}\ dx=e^{kx}\ \cdot\ f(x)\ +\ c\)

Theorem 3:

\(\int\ e^{ax}\ \cos\ (bx\ +\ c)\ dx=\ e^{ax}\ \cdot\ \frac{\cos\ [\ bx\ +\ c\ -\ \tan^{-1}\ (b/a)\ ]}{\sqrt{a^2\ +\ b^2}}\)

\(\int\ e^{ax}\ \sin\ (bx\ +\ c)\ dx=\ e^{ax}\ \cdot\ \frac{\sin\ [\ bx\ +\ c\ -\ \tan^{-1}\ (b/a)\ ]}{\sqrt{a^2\ +\ b^2}}\)

 

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 12


Some Special Integrals

Theorem 1:

\((i)\ \ \int\ \frac{dx}{a^2\ -\ x^2}=\frac{1}{2a}\ \log\ \Big|\frac{a\ +\ x}{a\ -\ x}\Big|\ +c\\ (ii)\ \ \int\ \frac{dx}{x^2\ -\ a^2}=\frac{1}{2a}\ \log\ \Big|\frac{x\ -\ a}{x\ +\ a}\Big|\ +c\\ (iii)\ \ \int\ \frac{dx}{x^2\ +\ a^2}=\frac{1}{a}\ \tan^{-1}\ \frac{x}{a}\ +c\)

Remark:

If we have an integral of the form \(\int\ \frac{dx}{(ax^2\ +\ bx\ +\ c)}\) then we put the denominator in the form \([\ (x\ +\ \propto)^2\ \pm\ \beta^2\ ]\) and then Integrate.

Theorem 2:

Integrals of the form \(\int\ \frac{(px\ +\ q)}{(ax^2\ +\ bx\ +c)}\ dx\)

METHOD:

Let \((px\ +\ q)=A\ \cdot\ \frac{d}{dx}\ (ax^2\ +\ bc\ +\ c)\ +\ B\)

Find \(A \ \ and\ \ B\).

Now, the integrand so obtained can be integrated easily.

Theorem 3:

\((i)\ \ \int\ \frac{dx}{\sqrt{a^2\ -\ x^2}}=\ \sin^{-1}\ \frac{x}{a}\ +\ c\\ (ii)\ \ \int\ \frac{dx}{\sqrt{x^2\ -\ a^2}}=\ \log\ |x\ +\ \sqrt{x^2\ -\ a^2}\ |\ +c\\ (iii)\ \ \int\ \frac{dx}{\sqrt{x^2\ +\ a^2}}=\ \log\ |x\ +\ \sqrt{x^2\ +\ a^2}\ |\ +c\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 13


Theorem 4:

Integrals of the form \(\int\ \frac{(px\ +\ q)}{\sqrt{ax^2\ +\ bx\ +\ c}}\ dx\)

METHOD:

Let \((px\ +\ q)=\ A\ \cdot\ \frac{d}{dx}\ (ax^2\ +\ bx\ +\ c)\ +B\)

Now, the value of the integral can be obtained easily.

Theorem 5:

\((i)\ \ \int\ \sqrt{a^2\ -\ x^2}\ dx=\frac{x}{\alpha}\ \sqrt{a^2\ -\ x^2}\ +\ \frac{a^2}{\alpha}\ \sin^{-1}\ \frac{x}{a}\ +c\)

\((ii)\ \ \int\ \sqrt{x^2\ -\ a^2}\ dx=\frac{x}{\alpha}\ \sqrt{x^2\ -\ a^2}\ -\ \frac{a^2}{\alpha}\ \log\ |\ x\ +\ \sqrt{x^2\ -\ a^2}\ |\ +c\)

\((iii)\ \ \int\ \sqrt{x^2\ +\ a^2}\ dx=\frac{x}{\alpha}\ \sqrt{x^2\ +\ a^2}\ +\ \frac{a^2}{\alpha}\ \log\ |\ x\ +\ \sqrt{x^2\ +\ a^2}\ |\ +c\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 14


Theorem 6:

Integrals of the form \(\int\ \sqrt{ax^2\ +\ bx\ +\ c}\ dx\)

METHOD:

Express \((ax^2\ +\ bx\ +\ c)\) as \(a\ [\ (x\ +\ \alpha)^2\ \pm\ \beta^2\ ]\) and obtain an integral which can be evaluated easily.

Theorem 7:

Integrals of the form \(\int\ (px\ +\ q)=\ \sqrt{ax^2\ +\ bx\ +\ c}\ \ dx\)

METHOD:

Let \((px\ +\ q)=\ A\ \cdot\ \frac{d}{dx}\ (ax^2\ +\ bx\ +\ c)\ +B\)

Find \(A\ \ and\ \ B.\)

Then, we get the integrant which is easily integrable

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 15


Integration using partial fractions

Rational Fractions:

If \(f(x)\ \ and\ \ g(x)\) are polynomial fractions such that \(g(x)\ \ne 0\). Then, \(\frac{f(x)}{g(x)}\) is called rational fraction.

If the degree \(f(x)\ \lt\ degree\ \ g(x)\) then \(\frac{f(x)}{g(x)}\) is called proper rational fraction.

If the degree \(f(x)\ \ge\ degree\ \ g(x)\) then \(\frac{f(x)}{g(x)}\) is called improper rational fraction.

If \(\frac{f(x)}{g(x)}\) is an improper rational fraction then by dividing \(f(x)\ \ by\ \ g(x),\) we can express \(\frac{f(x)}{g(x)}\) as sum of a polynomial and proper rational fraction.

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 16


Partial Fractions

Any proper rational fraction \(\frac{p(x)}{q(x)}\) can be expressed as the sum of rational fractions, each having a simplest factor \(q(x).\) Each such fraction is known as partial fraction and the process of obtaining them is called the decomposition or resolving of the given fraction into partial fraction.

      Fraction in the denominator     Corresponding partial fraction

(i)      \((x\ -\ a)\)                                      \(\frac{A}{x\ -\ a}\)

(ii)     \((x\ -\ b)^2\)                                    \(\frac{A}{x\ -\ b}\ +\ \frac{B}{(x\ -\ b)^2}\)

(iii)    \((x\ -\ c)^3\)                                    \(\frac{A}{x\ -\ c}\ +\ \frac{B}{(x\ -\ c)^2}\ +\ \frac{C}{(x\ -\ c)^3}\)

(iv)    \((ax^2\ +\ bx\ +\ c)\)                        \(\frac{Ax\ +\ B}{(ax^2\ +\ bx\ +\ c)}\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 17


Properties of Definite Integrals

\(1.\ \ \int\limits_a^b\ f(x)\ dx=\int\limits_a^b\ f(t)\ dt\)

\(2.\ \ \int\limits_a^b\ f(x)\ dx=\ -\ \int\limits_a^b\ f(x)\ dx\)

\(3.\ \ \int\limits_a^b\ f(x)\ dx=\int\limits_a^c\ f(x)\ dx\ +\ \int\limits_c^b\ f(x)\ dx,\) where \(a\ \lt\ \lt\ \lt\ b\)

Remark:

If \(a\ \lt\ c_1\lt\ c_2\lt\ . . .\ \lt\ c_n\ \lt\ b\) then \(\int\limits_a^b\ f(x)\ dx=\int\limits_a^{c_1}\ f(x)\ dx\ +\ \int\limits_{c_1}^{c_2}\ f(x)\ dx\ +\ \int\limits_{c_n}^b\ f(x)\ dx\)

 

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 18


\(4.\ \ \int\limits^a_0\ f(x)\ dx=\ \int\limits^a_0\ f(a\ -\ x)\ dx\)

\(5.\ \ \int\limits^b_a\ f(a\ +\ b\ -\ x)\ dx=\ \int\limits^b_a\ f(x)\ dx\)

\(6.\ \ \int\limits^b_a\ \{\ f(x)\ +\ g(x)\ \}\ dx=\ \int\limits^b_a\ f(x)\ dx\ +\ \int\limits^b_a\ g(x)\ dx\)

\(7.\ \ \int\limits^a_{-a}\ f(x)\ dx=\ \begin{cases}0,\ &\ \text{when f(x)is an odd function}\\ 2\ \int\limits^a_0\ f(x)\ dx,\ &\ \text{when f(x) is even function}\end{cases}\)

\(8.\ \ \int\limits^{2a}_0\ f(x)\ dx=\ \begin{cases}0,\ &\ \text{if f(2a - x) = - F(x)}\\ 2\ \int\limits^a_0\ f(x)\ dx,\ &\ \text{if f(2a - x) = f(x)}\end{cases}\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 19


To evaluate a definite Integral by substitution

In \(\int\limits^b_a\ f(x)\ dx,\) when the variable \(x\) is converted into a new variable \(t\) by some relation then we put \(x=a\) and \(x=b\) in that relation to obtain the corresponding values of \(t\), giving the lower limit and upper limit respectively of the new integrand in \(t.\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Integrals

Card 20


Fundamental Theorem of Integral Calculus

Let \(F(x)\) be continuous function defined on an integral \([\ a,\ b\ ]\) and let the anti-derivative of \(f(x)\) be \(F(x)\). Then, the definite integral of \(f(x) \) over \([\ a,\ b\ ],\) denoted by \(\int\limits^b_a\ f(x)\ dx\) is given by \(\int\limits^b_a\ f(x)\ dx = \ [\ F(x)\ ]^b_a\ =\ F(b)\ -\ F(a)\)

\(\overline{\underline{\text{NOTE}}}\):

Here \(a\ \ and\ \ b\) are respectively known as the lower limit and the upper limit of the integral.

If \(\int\ f(x)\ dx\ =\ F(x)\ +\ c\) then 

\(\int\limits^b_a\ f(x)\ dx\ =\ [\ F(x)\ +\ c\ ]^b_a\ =\ \{F(b)\ +\ c\}\ -\ \{F(a)\ +\ c\}=\ F(b)\ -\ F(a).\)

Visit https://www.testbee.in for practice test, concept-based learning
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Log In to Your Testbee Account!

X

or Forgot password?

Sign up and Start...

X
Please enter valid Mobile No to get OTP
Please enter valid Email Id to get OTP

Lost your password? Please enter your mobile number. You will receive a otp to create a new password.