Feedback Daily Quiz
1 2 3 4 5 6 7 8 9 10
InstaCue : Mathematics / Limits And Derivatives

Sandwich Theorem


(ix)  If \(f(x) \le\ g(x),\ \forall\ \text{then}\ \lim\limits_{x \to a}\ g(x)\)

(x)  \(\lim\limits_{x \to a}[f(x)]^{g(x)}=\ \{\lim\limits_{x \to a}f(x)\}^{\lim\limits_{x \to a}g(x)}\)

(xi)  \(\lim\limits_{x \to a}f\{g(x)\}=\ f\{\lim\limits_{x \to a}\ g(x)\}=\ f(m)\) provided \(f\) is continuous at \(\lim\limits_{x \to a}\ g(x)=m\).

(xii)  Sandwich Theorem If \(f(x)\ \le g(x) \le\ h(x)\ \forall\ x\ \in(\alpha,\ \beta)-\ \{a\}\ \ and\ \ \lim\limits_{x \to a} f(x)=\ \lim\limits_{x \to a} h(x)=l,\) then, \(\lim\limits_{x \to a} g(x)=l,\ \text{where}\ a\ \in (\alpha,\ \beta)\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Limits And Derivatives

Important Results On Limit


Important Results on Limit

Some important results on limits are given below

1. Algebraic Limits

    (i)  \(\lim\limits_{x \to a}\ \frac{x^n-a^n}{x-a}=\ na^{n-1},\ n \in Q,\ a \gt 0\)

    (ii)  \(\lim\limits_{x \to \infty}\ \frac{1}{x^n}=0,\ n \in N \)

    (iii)  If \(m,\ n\) are positive integers and \(a_0,\ b_0\) are non-zero real numbers, then \(\lim\limits_{x \to \infty}\ \frac{a_0\ x^m\ +\ a_1\ x^{m-1}\ +\ ...\ +\ a_{m-1}\ x\ +\ a_m}{b_0\ x^n\ +\ b_1\ x^{n-1}\ +\ ...\ +\ b_{n-1}\ x\ +\ b_n}\)

      \(= \begin{cases} \frac{a_0}{b_0} & \quad \text{if }m=n\\ 0 & \quad \text{if } m \lt n\\ \infty & \quad \text{if } m \gt n, a_0 b_0 \gt 0\\ - \infty & \quad \text{if }m \gt n, a_0 b_0 \lt 0 \end{cases}\)

    (iv)  If \(\lim\limits_{x \to 0}\ \frac{(1\ +\ x)^n-1}{x}=n\)

    (v)  \(\lim\limits_{x \to 0}\ \frac{(1\ +\ x)^m-1}{(1\ +\ x)^n-1}=\frac{m}{n}\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Limits And Derivatives

Trignometric Limits


Trignometric Limits

(i)  \(\lim\limits_{x \to 0}\ \frac{\sin x}{x}=1= \lim\limits_{x \to 0}\ \frac{x}{\sin x}\)

(ii)  \(\lim\limits_{x \to 0}\ \frac{\tan x}{x}=1= \lim\limits_{x \to 0}\ \frac{x}{\tan x}\)

(iii)  \(\lim\limits_{x \to 0}\ \frac{\sin^{-1} x}{x}=1= \lim\limits_{x \to 0}\ \frac{x}{\sin^{-1} x}\)

(iv)  \(\lim\limits_{x \to 0}\ \frac{\tan^{-1} x}{x}=1= \lim\limits_{x \to 0}\ \frac{x}{\tan^{-1} x}\)

(v)  \(\lim\limits_{x \to 0}\ \frac{\sin x^\circ}{x}=\frac{\pi}{180}\)

(vi)  \(\lim\limits_{x \to \infty}\ \frac{\sin x}{x}= \lim\limits_{x \to \infty} \frac{\cos x}{x}=0\)

(vii)  \(\lim\limits_{x \to \infty} \sin\ x\ \ or\ \ \lim\limits_{x \to \infty} \cos\ x\) oscillates between \(-1\ to\ \ 1.\)

(viii)  \(\lim\limits_{x \to 0}\ \frac{\sin^P\ mx}{\sin^P\ nx}= \big(\frac{m}{n}\big)^P\)

(ix)  \(\lim\limits_{x \to 0}\ \frac{\tan^P\ mx}{\tan^P\ nx}= \big(\frac{m}{n}\big)^P\)

(x)  \(\lim\limits_{x \to 0}\ \frac{1\ -\ \cos m\ x}{1\ -\ \cos n\ x}=\frac{m^2}{n^2};\ \lim\limits_{x \to 0}\ \frac{\cos a x\ -\ \cos bx}{\ \cos c x\ -\ \cos\ dx}=\frac{a^2\ -\ b^2}{c^2\ -\ d^2}\)

(x)  \(\lim\limits_{x \to 0}\ \frac{\cos m\ x\ -\ \cos n\ x}{x^2}= \frac{n^2\ -\ m^2}{2}\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Limits And Derivatives

Logarithmic Limits & Exponential Limits


 Logarithmic Limits

   (i)  \(\lim\limits_{x \to 0}\ \frac{\log_a(1\ +\ x)}{x}=\log_a\ e;\ a \gt 0,\ \ne 1\)

   (ii)  In particular, \(\lim\limits_{x \to 0}\ \frac{\log_e(1\ +\ x)}{x}=1\ \ and\ \ \lim\limits_{x \to 0}\ \frac{\log_e(1\ +\ x)}{x}=-1\)

Exponential Limits

   (i)  \(\lim\limits_{x \to 0} \frac{a^x\ -\ 1}{x}= \log_e\ a,\ a \gt 0\)

   (ii)  In particular, \(\lim\limits_{x \to 0} \frac{e^x\ -\ 1}{x}=1\ \ and\ \ \lim\limits_{x \to 0} \frac{e^{\lambda\ x}\ -\ 1}{x}=\lambda\)

  (iii)  \(\lim\limits_{x \to \infty}\ a^x = \begin{cases} 0, & \quad0 \le a\lt 1\\ 1, & \quad a=1\\ \infty, & \quad a \gt 1\\ \text{Does not exist, } & \quad a \lt 0 \end{cases}\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Limits And Derivatives

General Cases


5. \(1^\infty\ Form\ Limits\)

     \((i)\ \ \text{If}\ \lim\limits_{x \to a} f(x)= \lim\limits_{x \to a}\ g(x)=0, \text{then}\\ \ \ \ \ \ \ \lim\limits_{x \to a} \{1\ +\ f(x)\}^{1/g(x)}\ = e^{\lim\limits_{x \to a} \frac{f(x)}{g(x)}}\)

   \((ii)\ \ \text{If}\ \lim\limits_{x \to a} f(x)=1\ \ and\ \ \lim\limits_{x \to a}\ g(x)= \infty,\ \text{then}\\ \ \ \ \ \ \ \ \lim\limits_{x \to a} \{\ f(x)\}^{g(x)}\ = e^{\lim\limits_{x \to a} \{f(x)-1\}\ g(x)}\)

In General Cases

   (i)  \(\lim\limits_{x \to 0}\ (1\ +\ x)^{1/x}\ =e\)

   (ii)  \(\lim\limits_{x \to \infty}\ \Big(1+\ \frac{1}{x}\Big)^x=e\)

   (iii)  \(\lim\limits_{x \to 0}\ (1\ +\ \lambda\ x)^{1/x}\ =e^\lambda\)

   (iv)  \(\lim\limits_{x \to \infty}\ \Big(1+\ \frac{\lambda}{x}\Big)^x=e^\lambda\)

   (v)  \(\lim\limits_{x \to 0}\ (1\ +\ a\ x)^{b/x}\ = \lim\limits_{x \to \infty} \Big(1+\ \frac{a}{x}\Big)^{bx}=e^{ab}\)  

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Limits And Derivatives

Methods To Evaluate Limits


Methods to Evaluate Limits

To find \(\lim\limits_{x \to a}\ f(x),\) we substitute \(x=a\) in the function.

If \(f(a) \) is finite, then \(\lim\limits_{x \to a}\ f(x)= f(a).\)

If \(f(a)\) leads to one of the following form \(\frac{0}{0};\ \frac{\infty}{\infty};\ \infty\ -\ \infty;\ 0\ \times\ \infty;\ 1^\infty,\ 0\) and \(\infty^0\) (called indeterminate forms), then \(\lim\limits_{x \to a}\ f(x)\) can be evaluated by using following methods.

   (i)  Factorization Method  This method is particularly used when on substituting the value of \(x\), the expression take the form \(0/0.\)

   (ii)  Rationalization Method  This method is particularly used when either the numerator or the denominator or both involved square roots and on substituting the value of \(x\), the expression take the form \(\frac{0}{0};\ \frac{\infty}{\infty}.\)

\(\underline{\overline{NOTE}}\)

To evaluate \(x \to \infty\) type limits write the given expression in the form \(N/D\) and then divide both \(N\ \ and \ \ D\) by highest power of \(x\) occurring in both \(N\ \ and \ \ D\) to get a meaningful form.

 

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Limits And Derivatives

L'Hospital's Rule


L'Hospital's Rule

If \(f(x)\ \ and\ \ g(x)\) be two functions of \(x\) such that

   (i)  \(\lim\limits_{x \to a} f(x) = \lim\limits_{x \to a}\ g(x) =0.\)

   (ii)  both are continuous at \(x=a\).

   (iii)  both are differentiable at \(x=a\).

   (iv)  \(f'(x)\ \ and\ \ g'(x)\) are continuous at the point \(x=a\), then \(\lim\limits_{x \to a} \frac{f(x)}{g(x)}= \lim\limits_{x \to a} \frac{f'(x)}{g'(x)}\) provided that \(g(a) \ne 0.\)

Above rule is also applicable, if \(\lim\limits_{x \to a} f(x)= \infty\ \ and\ \ \lim\limits_{x \to a}\ g(x)= \infty.\)

If \(f'(x),\ g'(x)\) satisfy all the conditions embedded in L' Hospital's rule, then we can repeat the application of this rule on

\( \frac{f'(x)}{g'(x)}\ \ \text{to get}\ \lim\limits_{x \to a}\ \frac{f'(x)}{g'(x)}= \lim\limits_{x \to a}\ \frac{f''(x)}{g''(x)}.\)

 

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Limits And Derivatives

Evaluating Limits.


Sometimes, following expansions are useful in evaluating limits.

\(\bullet\ \ \log(1\ +\ x)=x\ -\ \frac{x^2}{2}\ +\ \frac{x^3}{3}\ +\ \frac{x^4}{4}\ +\ \frac{x^5}{5}\ + ...\ +\ (-1 \lt x \le 1)\)

\(\bullet\ \ \log(1\ -\ x)=\ -x\ -\ \frac{x^2}{2}\ -\ \frac{x^3}{3}\ -\ \frac{x^4}{4}\ -\ \frac{x^5}{5}\ - ...\ (-1 \lt x \lt 1)\)

\(\bullet\ \ e^x=1\ +\ \frac{x}{1!}\ +\ \frac{x}{2!}\ +\ \frac{x}{3!}\ +\ \frac{x}{4!}\ +\ ...\)

\(\bullet\ \ a^x=1\ +\ x\ (\log_e\ a)\ +\ \frac{x^2}{2!}\ (\log_e\ a)^2\ +...\)

\(\bullet\ \ \sin\ x=x\ -\ \frac{x^3}{3!}\ +\ \frac{x^5}{5!}\ -\ \frac{x^7}{7!}\ +\ ...\)

\(\bullet\ \ \cos\ x=1\ -\ \frac{x^2}{2!}\ +\ \frac{x^4}{4!}\ -\ \frac{x^6}{6!}\ +\ ...\)

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Limits And Derivatives

Limits


Limits

Let \(y=f(x) \) be a function of \(x\). If the value of \(f(x)\) tend to a definite number as \(x\) tends to \(a\), then the number so obtained is called the limit of \(f(x) \) at \(x=a\) and we write it as \(\lim\limits_{x \to a}\ f(x).\)

\(\bullet\)  If \(f(x)\) approaches to \(l_1\)as \(x\) approaches to \('a'\) from left, then \(l_1\) is called the left hand limit of \(f(x)\) at \(x=a\) and symbolically we write it as \(f(a-0)\) or \(\lim\limits_{x \to a^-}\ f(x)\) or \(\lim\limits_{h \to 0}\ f(a-h)\)

\(\bullet\)  Similarly, right hand limit can be expressed as \(f(a+0)\ \ or\ \ \lim\limits_{x \to a^-}\ f(x)\ \ or\ \ \lim\limits_{h \to 0}\ f(a+h)\)

\(\bullet\)  \(\lim\limits_{x \to a^-}\ f(x)\) exists iff \(\lim\limits_{x \to a^-}\ f(x)\ \ and\ \ \lim\limits_{x \to a^+}\ f(x)\) exists and equal.

 

Visit https://www.testbee.in for practice test, concept-based learning
InstaCue : Mathematics / Limits And Derivatives

Properties Of Limits


If \(\lim\limits_{x \to a} f(x)=l\ \ and\ \ \lim\limits_{x \to a}g(x)=m\) (where, \(l\ \ and\ \ m\) are real numbers), then

(i)  \(\lim\limits_{x \to a}\ \{f(x)\ +\ g(x)\}=l\ +\ m\)                    [sum rule]

(ii)  \(\lim\limits_{x \to a}\ \{f(x)\ -\ g(x)\}=l\ -\ m\)          [difference rule]

(iii)  \(\lim\limits_{x \to a}\ \{f(x)\ \cdot\ g(x)\}=l\ \cdot\ m\)                 [product rule]

(iv)  \(\lim\limits_{x \to a}\ k \cdot f(x)=k \cdot\ l\)              [constant multiple rule]

(v)  \(\lim\limits_{x \to a}\ \frac{f(x)}{g(x)}= \frac{l}{m},\ m\ne0\)                         [quotient rule]

(vi)  If \(\lim\limits_{x \to a} f(x)=+\ \infty,\ or\ \ -\ \infty,\text{then}\ \ \lim\limits_{x \to a} \frac{1}{f(x)}=0\)

(vii)  \(\lim\limits_{x \to a}|f(x)|=\lim\limits_{x \to a}|f(x)|\)

(viii)  \(\lim\limits_{x \to a}\ \log\{f(x)\}= \log\{\lim\limits_{x \to a}\ f(x)\},\) provided \(\lim\limits_{x \to a} f(x) \gt 0\)

Visit https://www.testbee.in for practice test, concept-based learning
1 2 3 4 5 6 7 8 9 10

Log In to Your Testbee Account!

X

or Forgot password?

Sign up and Start...

X
Please enter valid Mobile No to get OTP
Please enter valid Email Id to get OTP

Lost your password? Please enter your mobile number. You will receive a otp to create a new password.